Inborn errors of metabolism (IEMs) represent a large class of rare genetic disorders.

For a considerable proportion of IEM, therapy is available, which dramatically improves patient outcomes. Accurate and timely diagnosis is therefore essential. However, the accuracy and timeliness of an IEM diagnosis is often difficult to achieve due to a staggering number of these rare genetic disorders, the heterogeneity of symptoms and phenotypes, as well as the extensive list of required tests and skills to properly interpret these in the context of the patient’s phenotype. By combining comprehensive expert resources on IEMs and existing ontologies - hierarchies of concepts organized as a standardized vocabulary (e.g. Human Phenotype Ontology) – we created an extensive system that aims to provide both an online knowledgebase and a smart system (artificial intelligence) for curation and diagnosis support.


© 2017 IEMbase, inc. All rights reserved.